
Department of Computer Science & Engineering, University of Nevada, Reno

BETA Universe Systems Initiative Table Application

Team 7: Taking Initiative

Jacob Gayban, Mark Graham, Andy Alarcon, Jacob Tucker, Griffin Wagenknecht

Dr. Sergiu Dascalu, Vinh Le, Dr. Devrin Lee

John Molt

November 16, 2021

Table of Contents

Abstract 2

Introduction 2

High-level and medium-level design 3

System-level diagram 3

Program units 4

Database tables 16

Detailed design 19

Hardware design 24

User interface design 25

Version control 38

Work Contribution 39

1

Abstract
The BETA Universe Systems Initiative Table is a mobile-optimized web application that
aims to digitize and streamline gameplay components from the tabletop role-playing game
“BETA Universe Systems,” and limit narrative disruption. The players are able to create and
sign in to an account, manage characters profiles, and join a game session started by the
gamemaster. The gamemaster can create and sign in to an account, manage the non-player
character profiles, and manage game sessions. The app embeds all the main components of
player combat for the game and maintains a real-time chat log during game sessions. The
chat log records the current events that have occurred in the session, allows players to
message each other, and presents the turn order for all the session users.

Introduction
The Initiative Table application for “BETA Universe Systems” provides a host of
quality-of-life features that handle many of the administrative and organizational aspects of
the “BETA Universe Systems” table-top RPG game. Through the app, game masters can
create sessions of a game and invite other players to play in real-time. The significance of
this project is that players can enjoy the role-playing narrative aspect of the game without
being disrupted by whose turn it is and without the extraneous calculations that, for
example, can determine if their attack successfully connected or if it failed. This application
is optimized for both desktop and mobile viewing to allow for portability and comfort when
interacting with the game to meet the description as mentioned earlier. As described by the
client, the lengthy calculations will be reduced by the application’s built-in rule correlating
and equation calculating matrix to distribute appropriate numbers and information to the
player efficiently. The Initiative Table application will meet this objective by giving the
player several interfaces for which they can fill in the missing information for proper
calculations.
Our current implementation continues to use Vue.js, Vuetify, and Axios for client-side
(front-end), and Microsoft’s ASP.NET Core framework for server-side (back-end). Most of
the visual and logical design is complete at this stage, and the team has begun working on
implementation. Since the previous report, the team has already started working on the UI
and has implemented the authentication system. When it comes to changes regarding our
project, we have only had minor changes to our database tables. Nothing else has changed
regarding the project.

2

High-level and medium-level design
System-level diagram
The following diagram is of our system’s context model, which illustrates the high-level
components of the system. The character profile system allows the creation and
management of character profiles. The authentications system enables players to register
and log into their accounts. The session management system will allow players to join
sessions and the GM to manage them. The real-time sessions system is the backbone of our
sessions which enables real-time communication. The actions system allows players to take
actions during sessions, and our web API controllers system enables all our systems to
interface with our databases.

Fig. 1: The table above shows the context model of the Initiative Table application for
“BETA Universe Systems”.

3

Program units
The Initiative Table application for “BETA Universe Systems” is a non-object-oriented
solutions project. Most of these systems share data and are connected and feature a
hierarchy. Our authentication system appears first at the highest level, followed by the
character profile and session management system. Then our actions, real-time session, and
web API controllers systems are at the lowest level. The following tables show the different
program units that are required to make each of the systems work.

Authentication The authentication system primarily consists of a Vue
component that provides the user with a user
interface and makes AJAX requests based on the user
input to our web API controllers, interacting with our
database. The system will allow users to register for
an account and log in.

registerPlayer(player) Inputs: A player object based on our database
players table.
Outputs: A player object based on our database
players table or an error.
Description: This sends a request to our players web
API controller to create a new record for the player in
the table.
Program Units Called: None
Exceptions: An exception is thrown if the player
object is empty or incorrect.

loginPlayer(player) Inputs: A player object based on our database
players table.
Outputs: A player object based on our database
players table or an error.
Description: This sends a request to our players web
API controller to check if the user exists and if the
credentials match.
Program Units Called: None
Exceptions: An exception is thrown if the player
object is empty, incorrect or if the credentials are
incorrect.

4

sendSecurityEmail(passcode) Inputs: A 6 digit random number.
Outputs: Nothing.
Description: This sends an email with the number to
the player’s email when registering to verify the
email is valid—waits for the correct number to be
entered.
Program Units Called: Calls registerPlayer upon
successful entering of the number.
Exceptions: An exception is thrown if the email is
invalid and cannot be sent.

Table 1: The table above lists the program units under the Authentication system, allowing
users to register and log into accounts.

Real-Time Session The real-time session system primarily consists of a
SignalR Hub. The hub contains all of the methods that
will send events to our connected clients to control
the flow of gameplay and send messages to the chat
log of the current session.

These methods are called initially on the client-side
and then handled by SignalR. SignalR determines
which connected clients need to receive the event
signal and sends it to them with any optional data
attached.

All of the connected clients listen for the event signals
and handle them once received.

sendMessageToAll(message) Inputs: A message object
Outputs: An event signal with the message attached
to all the connected clients.
Description: Sends a message to the chat log that all
the connected clients to based on the passed object.
Program Units Called: None
Exceptions: An exception is thrown if the message
object is empty or incorrect.

5

sendMessageTo(message,
playerID)

Inputs: A message object and int playerID. The
playerID corresponds to the identifier used internally
by SignalR when they connect initially.
Outputs: An event signal with the message attached
to only the playerID that is connected.
Description: Sends a direct message to only the chat
log of the playerID that was passed.
Program Units Called: None
Exceptions: An exception is thrown if the message
object is empty or incorrect.

JoinSession(playerName,
sessionName)

Inputs: string playerName and string sessionName.
Outputs: An event signal to all connected clients with
a list of the currently connected players names
attached (includes new player).
Description: Adds the playerName to the current
session based on the passed name and assigns them
an internal playerID. SignalR establishes a
connection.
Program Units Called: Calls sendMessageToAll to let
everyone know that a new player has joined the
current session.
Exceptions: An exception is thrown if the
sessionName cannot be used to find a session in the
sessions table.

Override
OnDisconnectedAsync(playerID,
sessionName)

Inputs: int playerID.
Outputs: An event signal to all connected clients with
a list of the currently connected players names
attached (includes the player that left/ended their
connection).
Description: Overrides the SignalR disconnect
function. Removes the player from the current
session based on the passed playerID and
sessionName.
Program Units Called: Calls sendMessageToAll to let
everyone know that a passed player has left the
current session.
Exceptions: An exception is thrown if the
sessionName cannot be used to find a session in the
sessions table.

6

updateInitativeTable(tableData,
sessionName)

Inputs: An array of initiative table data [number,
playerName] and string sessionName.
Outputs: An event signal with the tableData attached
to all the connected clients.
Description: When the initiative table data has been
modified by an action this method is called to send
the updated data to all the connected clients.
Program Units Called: None
Exceptions: An exception is thrown if the
sessionName cannot be used to find a session in the
sessions table.

SignalPlayer(playerID) Inputs: int playerID.
Outputs: An event signal.
Description: Once a player’s initiative is next, or
when they need to roll the GM signals, it is their turn.
Enables the user interface for the player.
Program Units Called: None
Exceptions: An exception is thrown if the playerID
cannot be used to find a player in the session.

CloseAnyOpenModals(playerID) Inputs: int playerID.
Outputs: An event signal.
Description: This is a generic helper method that
will close any open modals for a given playerID.
Typically used during an intervention.
Program Units Called: None
Exceptions: An exception is thrown if the playerID
cannot be used to find a player in the session.

OpenATKDFNDModal(playerID) Inputs: int playerID.
Outputs: An event signal.
Description: This is a generic helper method that
opens the attack/defend modal for a given playerID.
Typically used during an intervention.
Program Units Called: None
Exceptions: An exception is thrown if the playerID
cannot be used to find a player in the session.

7

Table 2: The table above lists the program units under the Real-Time Session System,
which allows our real-time session system to control the flow of the session gameplay and

chat log.

Actions The actions system primarily consists of a
Vue component that provides the user with
a user interface and all of the potential
actions the user can take. The methods are
called and defined on the client-side. After
execution of each process, it sends data or
calls additional methods in other systems
or the current one depending on the action.

Confirm(Action) Inputs: A valid action
Outputs: A message
Description: This finalizes the users
selected actions.
Program Units called: The selected action
Exception: If no action is selected

Attack(Target) Inputs: Target
Outputs: A message
Description: This starts the process of the
attack process and it signals the defender.
Program Units called: Defend, roll,
Initiative, weapon, finish
Exception: If an invalid target is selected

Defend() Inputs: None
Outputs: A message
Description: This unit is being attacked
and must select their defense, skills, and
make rolls.
Program Units called: Roll, Armor,
Initiative
Exception: If they do not have an action

8

Roll(amount, die) Inputs: The number and type of dice
Outputs: an integer
Description: This is a dice roller that
outputs a number based on the input
Program Units called: none
Exception: If the amount or die are blank

Weapon() Inputs: None
Outputs: An item call
Description: This selects the weapon the
user is attacking with and uploads all of the
weapon’s data
Program Units called: Melee, ranged
Exception: If no action is selected

Armor() Inputs: None
Outputs: An item call
Description: This selects the armor the
user is defending with and uploads all of
the armor’s data
Program Units called: The selected action
Exception: If no action is selected

Skill(Skill) Inputs: A selected skill
Outputs: A message
Description: The user selects a skill and
the skill performs an event.
Program Units called: The skill selected
Exception: If no skill is selected

Initiative() Inputs: None
Outputs: A message
Description: This shifts the users turn
order based on the actions they have taken
this round.
Program Units called: None
Exception: None

9

Hold() Inputs: None
Outputs: A message
Description: The user holds their action
Program Units called: Initiative
Exception: They do not have an action,
unless in the second round.

Wait(event) Inputs: A specified event
Outputs: A message
Description: The user waits until a certain
event to occur before acting.
Program Units called: Initiative
Exception: They do not have action or do
not specify an event.

Melee(weapon) Inputs: The weapon they are attacking
with
Outputs: A message
Description: The user attacks with a melee
weapon.
Program Units called: Roll
Exception: An invalid weapon is selected

Ranged(weapon) Inputs: The weapon they are attacking
with
Outputs: An event call
Description: The user attacks with a
ranged weapon.
Program Units called: Roll
Exception: An invalid weapon is selected.

Location(roll) Inputs: An integer
Outputs: An integer corresponding to a
body map.
Description: It tells the group where an
attack happened on the body chart
depending on what was rolled.
Program Units called: Roll
Exception: No roll was given

10

Repeat Attack() Inputs: Nothing
Outputs: A message
Description: It repeats the users previous
attack action
Program Units called: Attack
Exception: There is no previous attack.

Intervention() Inputs: None
Outputs: A message
Description: The user interrupts a
defender by retargeting the attack to
themselves.
Program Units called: Defend
Exception: They do not have an action

Move(distance) Inputs: An integer representing how far
they want to move
Outputs: A message
Description: The user moves distance
units.
Program Units called: Initiative
Exception: They do not have an action or
invalid number

Skip() Inputs: None
Outputs: A message
Description: The user skips their action
Program Units called: Initiative
Exception: They do not have an action

Aim() Inputs: None
Outputs: A message
Description: The user aims at a target and
increases their chance of hitting the target
during their next action.
Program Units called: Initiative
Exception: They do not have an action.

Table 3: The table above lists the program units under the Action Systems. This lists many
of the available actions the users can take each round.

11

Web API Controllers The Web API controllers system will provide each of
our database tables with an interface that our Vue
components can persist and retrieve our data.

Each Web API controller is a module with its own
program units. Each controller has similar standard
Web API HTTP methods and has been condensed for
readability and formatting.

The players Web API controller differentiates since it
involves authenticating and registering users.

chrc_profilesController,
sessionsController,
session_usersController,
chat_logController,
initiativeTableController

Each Web API controller contains the following
methods :

● GET(ID): Returns a single record with the
provided ID.

● GET() : Returns all records.
● POST(record): Adds a new record to the

database table.
● PUT(record): Updates an existing record

based on the passed record.
● DELETE(ID): Deletes an existing record with

the provided ID.

Exceptions can occur during each of these methods if
a record is not found or cannot be added to the
database due to being empty or incorrect.

playersController,
● login(playersRecord): Retrieves the record

from the players table based on the passed
record. Hashes the password and checks if it
matches with the hashed password in the
database. If so, returns the playersRecord. An
exception is returned if the password does not
match

● register(playersRecord): Checks the passed
record does not already exist. If it does not, the
password is hashed and the playersRecord is
added to the table. An exception is returned if
the record already exists.

12

Table 4: The table above lists the program units under the Web API Controllers system.
This lists the different controllers this system will have and the program units within each

one.

Character Profile The Character Profile system will allow
users to manage the characters that they
have made to use in various sessions. The
character management system allows users
to perform certain actions regarding their
characters, like creating new ones and
updating existing ones. Users must be
logged in in order to access these options.

createCharacter() When the user clicks the “Create New”
button on the character menu, a prompt
will appear asking for several values for the
new character.

Inputs: Numerical values or text input
from the user, to be used to initialize the
character attributes.
Outputs: A completion message and an
updated view of the characters list, with
the new character visible.
Description: A POST request for the new
character is made with the inputted
information, and the new record is saved to
the database under the user’s account.
Program Units called:
chrc_profilesController
Exception: None

viewCharacter(id) Within the character menu, users can click
on the names of their characters to see a
detailed view of them.

Inputs: None
Outputs: A modal showing all the relevant
information associated with the selected
character.
Description: A GET request is made to the
server with the selected character’s ID.

13

Program Units called:
chrc_profilesController
Exception: None

editCharacter(id) Within the character menu, users can click
on the “Edit” button underneath a
character’s name to begin the editing
process.

This process functions similarly to
createCharacter(), except a PUT request is
made instead of a POST.

Inputs: None
Outputs: A completion message and an
updated view of the characters list.
Description: A PUT request is made to the
server with the selected character’s ID, and
the new values.
Program Units called:
chrc_profilesController
Exception: None

deleteCharacter(id) Within the character menu, users can click
on the “Delete” button associated with each
character to delete them.

Inputs: None
Outputs: A completion message and an
updated view of the characters list.
Description: A DELETE request is made to
the server with the selected character’s ID.
Program Units called:
chrc_profilesController
Exception: None

Table 5: The table above lists the functions of the Character Profile system.

14

Session Management Upon logging in, users are presented with
all the available sessions that have been
created by all players.

All users are allowed to join a session,
however if one is logged in as a GM, then
they will gain access to a “Create New”
button and “Delete” buttons associated
with each session.

joinSession(id) Each session has a “Join” button that users
can click to join a real-time session with
other players wishing to join the same
session.

Note that sessions that have already started
will not be able to be joined.

This program unit can be thought of as the
client-side version of the “JoinSession” unit
from the Real-Time Sessions system.

Inputs: None
Outputs: Connects to the session and
brings the user to the initiative table
interface to begin playing.

If the session is unable to be joined, an
error message will appear, and the user will
remain on the same page.
Description: Starts the process for joining
a session.
Program Units called:
JoinSession(playerName, sessionName)
Exception: None

createSession() Only GMs are allowed to create new
sessions. Doing so will create a new item
that will be displayed on the homepage for
logged-in users.

Upon clicking the “Create New” button, a
prompt will appear, asking for a name for
the new session.

15

Inputs: Text input from the GM.
Outputs: A completion message and an
updated view of the sessions list.
Description: A POST request is sent to the
server with the data from the user.
Program Units called: sessionsController
Exception: None

deleteSession(id) Only GMs can delete sessions.

If a session to be deleted is in progress, a
prompt will be shown confirming if the GM
wants to force-end the session.

Inputs: Confirmation from the GM
Outputs: All players within the session are
kicked, and the SignalR hub associated with
the session is closed. The session is then
removed from the database. A completion
message is shown and the sessions list is
updated.
Description: A DELETE request is sent to
the server with the data from the user.
Program Units called: sessionsController
Exception: None

Table 6: The table above lists the functions of the Session Management system.

Database tables
The following are the database tables for players, character profiles, sessions, session users,
chat log, and initiative table. Each of our database tables has general metadata attached;
this includes the record’s creation date, the date of the last edit made to the record, the
record’s creator, the last editor to the record, and if the record is deleted. The player’s
database table includes the player identification, the player’s name, e-mail, the account
password, and a flag to determine if the player is a game master. The character profile
database table includes the character profile identification, the identification of ownership,
the character profile group name, and if they are a non-playable character. The sessions
table consists of the session identification, the session’s name, and if the session is joinable.
The session users table includes the user’s identification, the user’s session identification, a
player identification for being able to determine if they joined the session, and character
profile identification for retrieving character information for the session. Next, the chat log
table includes message identification, the session identification for which session the

16

message belongs to, the identification for where the message is being sent to, the
identification for where the message came from, the message itself, and if it is a direct
message or a global message. Finally, the initiative table includes the table identification,
the session identification for which session the table belongs to, the character profile
identification for which character the initiative value belongs to, and the status. Any
primary keys and foreign keys have been bolded for readability and formatting.

creationDate lastEdit creator lastEditor isDeleted

Table 7: General metadata appended to all the database tables.

playerID name email password isGM

Table 8: Player’s database table.

character
ProfileID

characterProfile
_playerID

characterProfile
GroupNameTe

isNPC PER MD

SPK AGL STR CON HTP LHTP

AIM T.AIM MOVE FLY PAIN BlD

T.PEN P.PEN Cur_HTP MEM WIS MS

MR MD CHR PB MAN RR

PR SANITY SEX InitBonus Num_actions

Table 9: Character Profile database table. Contains the many stats of character profiles.

sessionID name isJoinable

Table 10: Sessions database table.

sessionUserID sessionUsersID_
sessionID

sessionUsersID_
playerID

sessionUsersID_
chrcProfilesID

Table 11: Session user’s database table

17

messageID messageID_
sessionID

messageID_
TOplayerID

messageID_F
ROMplayerID

message isDM

Table 12: Chat log database table

initTableID initTableID_sessionID initTableID_chrcProfilesID initTableStatus

Table 13: Initiative database table

WeaponID WeaponID_character
ProfileID

weaponName weapon
Class

isRange

weaponStats weaponShots weaponDAM weapon
Skill

weaponChatMsg

Table 14: Weapons database table

ArmorID ArmorID__character
ProfileID

armorName armorClass armorLoc

armorASB armorRFLT TargetFactor
(range only)

Table 15: Armors database table

ShieldID ShieldID___character
ProfileID

shieldName shieldClass shieldLoc

shieldASB shieldRFLT shieldIntPercent

Table 16: Shields database table

18

Detailed design
The following figures contain our detailed design diagrams.

Fig. 2: The figure above contains a sequence diagram that demonstrates the process of
creating a new character.

19

Fig. 3: The figure above contains an activity diagram that demonstrates how a login request
from a player is handled.

20

Fig. 4: The figure above contains an activity diagram that demonstrates what goes on when
a user joins a session.

21

Fig. 5: The figure above contains an activity diagram that demonstrates how a move action
from a player is handled.

22

Fig. 6: The figure above contains an activity diagram that demonstrates how an
intervention action from a player is handled.

23

Hardware design
The initiative table application does not have much in terms of hardware. It is primarily a
software solution, but it does make use of server hardware services for hosting. The client
has provided access to a hyper-v web server and MS-SQL Database server. The database
server is an instance of abstracted hardware. Other than these configurations, the team’s
focus is on implementing a software-based solution to the client’s needs.

24

User interface design
The following figures are snapshots of the system’s potential user interface. Note: The user
interface slightly varies between the two prominent roles GM and player. Buttons colored in
yellow only appear for the GM; everything else appears for both. Buttons colored in purple
represent dropdown menus.

Fig. 7: Login UI (Desktop). The initial login screen for the website. Users with accounts can
use their username and password to access their account and enter the main portion of the

application. New users can access the registration through the register button.

25

Fig. 8: Login UI (Mobile). Mobile version of the login page. It is not much different from the
desktop version other than scaling the size to the appropriate mobile aspect ratio.

26

Fig. 9: Register UI (Desktop). This screen allows the user to register their email as an
account for logging in to the Beta Universe Initiative Table App. The user can provide a

username, email address and password.

27

Fig. 10: Register UI (Mobile). This is the same functionality as the Desktop register screen.
The only difference is the mobile optimized layout of the fields.

28

Fig. 11: Home page UI (Desktop). After logging in as a regular player, the player is
presented with a section of the available sessions. Each card in the section represents a

session with a button to join. There is also a section for the characters the player has
created. Each card represents a character, and there are buttons to edit, delete and add the
individual characters. When logged in as a GM, there are two additional functions: creating

a new session and deleting a session.

29

Fig. 12: Home page UI (Mobile). For the mobile version of the homepage UI, the same
functionality is present; however, the two-session and character sections have been resized

to fit a mobile size screen. The cards now take up less vertical space to make up for the
change in screen size.

30

Fig. 13: Session UI (Desktop). The session UI is one of the critical components of the
application. This UI comes after a player joins a session and displays game-specific

information and interaction. The top bar shows the campaign name chosen by the GM. The
bar just underneath the campaign name is the button palette, which gives the players

interactivity to make actions within the game. The left sidebar holds the initiative table
information, which keeps track of the player turn order. The color of each name denotes the
different teams. The right and largest area display the chat log. The chat log displays actions
that have been taken, the results of those actions, and player chat messages. The bottom of

the chat area is the area where players can choose who to send a message, type in their
message, and click the send icon.

31

Fig. 14: Session UI (Mobile). The same functionality is present for the mobile version of the
session UI; however, the four main sections have been condensed vertically to present the

information. The button palette now wraps to make sure they are all accessible.

32

Fig. 15: Attack/Defend Modal (Desktop). This modal prepares players for the main combat
loop. After declaring an attack from the session screen, the player can set their weapon,

armor, shield, and data for a ranged attack. The player can also select “Previous ATK/DEF”
to auto-fill the selection from the last attack or defense the player used. The player can
enter data for the roll penalty, bonus and roll if the player chose to roll their own dice.

Ranged data should only appear if the player has chosen a ranged weapon. The blue “Target
Factor” includes a drop-down list of various calculations based on the player’s choice of

attack. The same screen will appear for a player who is being attacked, so that they may set
their own data for their defense.

33

Fig. 16: Dropdown menu for Target Factor in ATK/DFD Modal. This is an example of the
target factor calculations for the dropdown menu.

34

Fig. 17: Attack/Defend Modal (Mobile). This includes the same information and
interactions as the desktop version. This screen can contain a large amount of information

so the player will be able to scroll through all the data before confirming.

35

Fig. 18: Create Session Modal (Desktop). This modal comes from the GM selecting to create
a new session from the home screen. The GM can enter the name and campaign for the
session. The GM can also add NPCs to the session from this screen by selecting the plus
sign. This will cause a new row to appear under the NPCs area. Each row has options to
select an NPC name from a list and set their team from a list. The name list will contain

names of character profiles previously created by the player.

Fig. 19: Example dropdown for Select Name in Create Session modal.

36

Fig. 20: Create Session modal (Mobile). There is not much difference between the mobile
and desktop versions other than screen size.

37

Version control
The client informed the team which informed the graders/evaluators for the classes of
Computer Science (CS) 425 - Software Engineering and Computer Science (CS) 426 - Senior
Project in Computer Science at the University of Nevada, Reno that the Intellectual Property
(IP) belongs to the client, and the client wishes for the code and implementation to be
private. A compromise has been made that the repository on GitHub will be private and that
the graders/evaluators will have access to the repository but will only view the repository
for grading purposes. Due to this compromise, a link is not added to this documentation,
but invitations have been sent out to the parties involved.

38

Work Contribution

Andy
Alarcon

Jacob
Gayban

Mark
Graham

Jacob
Tucker

Griffin
Wagenknecht

Project Assignment 3
Paper (Writing sections
and formatting)

2.0 2.0 4.0 2.0 2.0

System-Level Diagram 2.0 0.0 0.0 0.0 0.0

Detailed Design Charts 2.0 3.0 0.0 0.0 2.0

Program Units 2.0 0.0 0.0 0.0 4.0

UI Design 0.0 0.0 0.0 3.5 0.0

Database Tables 0.5 0.0 2.5 2.0 0.0

Researching Web
Development

1.0 4.0 3.0 2.0 0.0

Team meetings 2.0 2.5 2.0 2.0 2.0

Total 11.5 11.5 11.5 11.5 10.0

Table 17: The table above shows the amount of time spent by each team member on each
activity.

39

