
Department of Computer Science & Engineering, University of Nevada, Reno

BETA Universe Systems Initiative Table Application

Jacob Gayban, Mark Graham, Andy Alarcon, Jacob Tucker, Griffin Wagenknecht

Dr. David Feil-Seifer, Dr. Devrin Lee, Vinh Le

John Molt

February 18, 2022

Table of Contents

Abstract 2

Recent Project Changes 2

Updated Specification 3

Summary 3

Updated Technical Requirements 3

Updated Use Case Modeling 6

Updated Design 12

Summary 12

Updated Level Designs 12

Updated User Interface Design 28

Glossary 38

Engineering Standards and/or Technologies 40

Project Impact and Context Considerations 41

References 42

Work Contribution 44

1

Abstract
In tabletop role-playing games, players can be burdened by extraneous calculations and
player order, which disrupt the flow and narrative of the game. The BETA Universe Systems
Initiative Table Application is a mobile-optimized companion web application that aims to
digitize and streamline gameplay components from the tabletop role-playing game “BETA
Universe Systems.” Players can register for accounts, manage player characters, and
participate in game sessions that feature real-time communication via a chat log and
combat loop. Gamemasters can also register for accounts, manage the non-player
characters and manage game sessions along with running them. This document outlines
the project's design and specification.

Recent Project Changes
The recent changes that have been done to the project are that a dice rolling function has
been added to allow for initiative value tracking. This makes it so that the purpose of
initiative order can be met which was a mission for this project. Additionally, weapon
creation, armor creation, and shield creation has been added to the project because we the
goal of this project is to help minimize the distraction from the narrative in the game play
and the group agreed that having all of this information inside the application with all
combat features involved, then the calculations need for armor, weapons, and shields can be
mitigated through the application.

2

Updated Specification
Summary of Changes
Several additions were made to our requirements in order to accommodate most of the
features present within the BETA Universe Systems combat. Major changes are as follows:
Weapons, armors, and shields have all been added as part of each character, and are stored
in the database. Users are now able to define items for their characters to use within
combat. A new library was added to the project in order to aid in generating more complex
dice rolls.

Updated Technical Requirements Specification
New functional requirements:

● ITA shall allow the user to create/edit/delete weapons, armors, and shields for each
character.

● ITA shall generate dice rolls upon user request.
● ITA shall allow the user to edit characters while in a session.
● ITA shall guide the user through the attack loop.
● ITA shall keep track of player actions within a session.
● ITA shall calculate a player’s initiative after they make an action.
● ITA shall allow the user to select the “repeat attack” action.

3

Functional Requirements

FR01. [1] ITA shall allow the user to create an account.
FR02. [1] ITA shall allow the user to authenticate into their account.
FR03. [1] ITA shall allow the user to create a session.
FR04. [1] ITA shall allow the user to delete a session.
FR05. [1] ITA shall allow the user to join a real-time session.
FR06. [1] ITA shall allow the user to send messages to other users.
FR07. [1] ITA shall allow the user to create character profiles.
FR08. [1] ITA shall display a character creation interface.
FR09. [1] ITA shall allow the user to edit character profiles.
FR10. [1] ITA shall allow the user to delete character profiles.
FR11. [1] ITA shall display the initiative table data.
FR12. [1] ITA shall display a chat log.
FR13. [1] ITA shall allow the user to select an action.
FR14. [1] ITA shall allow the user to select one or more targets.
FR15. [1] ITA shall allow the user to confirm their action.
FR16. [1] ITA shall display the “attack” interface.
FR17. [1] ITA shall allow the user to input a value for an attack roll.
FR18. [1] ITA shall allow the user to select a weapon for an “attack” action.
FR19. [1] ITA shall display the “defense” interface for an attacked user to defend.
FR20. [1] ITA shall allow the user to input values for the “defense” action.
FR21. [1] ITA shall allow the user to select a defensive item for a “defense” action.
FR25. [1] ITA shall allow the user to select the “move” action.
FR26. [1] ITA shall allow the user to select the “hold” action.
FR27. [1] ITA shall allow the user to select the “wait” action.
FR28. [1] ITA shall display actions in the chat log for record keeping.
FR29. [1] ITA shall allow the game master to start and end sessions.
FR30. [1] ITA shall allow the game master to signal to players.
FR33. [1] ITA shall allow the user to create/edit/delete weapons, armors, and shields

for each character.
FR34. [1] ITA shall generate dice rolls upon user request.
FR35. [1] ITA shall allow the user to edit characters while in a session.
FR36. [1] ITA shall guide the user through the attack loop.
FR37. [1] ITA shall calculate a player’s initiative after they make an action.
FR38. [1] ITA shall allow the user to select the “repeat attack” action.
FR22. [2] ITA shall display an intervention prompt for non-current action users.
FR23. [2] ITA shall display an “intervention” interface.
FR24. [2] ITA shall allow the user to input values for “intervention” action if qualified.
FR39. [2] ITA shall keep track of player actions within a session.
FR31. [3] ITA shall generate an auto XP tally report.
FR32. [3] ITA shall add endurance statistic tracking.

Table 1: All the requirements that ITA will meet by the end of Fall 2021 semester, [1], and
Spring 2022 semester, [2], additional items that are not required, but nice to have, [3].

4

New non-functional requirements:
● ITA shall use an accessible color scheme to aid users.

Non-Functional Requirements

NFR01. [1] ITA will utilize Vue.js., Vuetify, Axios., ASP.NET Core. and SQL databases.
NFR02. [1] ITA will contain a home interface.
NFR03. [1] ITA will contain a session interface.
NFR04. [1] ITA will contain a last modified date field for all SQL table records.
NFR05. [1] ITA will contain a creation date field for all SQL table records.
NFR06. [1] ITA will contain a delete flag field for all SQL table records.
NFR07. [1] ITA will contain a user record creation field for all SQL table records.
NFR08. [1] ITA will be optimized on mobile devices.
NFR09. [2] ITA shall use an accessible color scheme to aid users.

Table 2: All the non-functional requirements that ITA will meet by the end of Fall 2021
semester, [1], and Spring 2022 semester, [2], additional items that are not required, but nice

to have, [3].

5

Updated Use Case Modeling
Our use cases saw no changes since last semester.

Use Case Diagram

Fig. 1: Use case diagram showing the available actions users have when managing their
accounts.

6

Fig. 2: Use case diagram showing the actions players and GMs can take during a session.

7

Detailed Use Cases
Note: Both players and GMs share certain actions. There is no difference in behavior
between a player performing an action and a GM performing the same action.

Account Management

ID Use Case Description

UC01 CreateAccount Players can create an account by providing an
email and password.

UC02 Login Players can log into registered accounts by
providing an email and password.

UC03 JoinSession After login, users will be able to see all available
sessions, which they can click on to join.

UC04 CreateSession (GM only) GMs can create new sessions by
providing a name.

UC05 DeleteSession (GM only) GMs can delete existing sessions by
clicking on a session’s delete button.

UC06 CreateCharacter Players can create characters to use in various
sessions. Characters have various attributes like
their name, equipment, and stats.

UC07 EditCharacter Players can edit their characters’ names,
equipment, and stats.

UC08 DeleteCharacter Players can delete their characters by clicking
on that character’s delete button.

Table 3: Detailed use case descriptions for the account management actions.

Session Actions

ID Use Case Description

UC09 PickTargets Certain actions, like attacking and chatting,
require the player to select the target(s) for that
action.

UC10 Attack The active character takes an attack action
against designated targets with a specified
weapon.

8

UC11 RepeatAttack A convenience option. Will launch a new attack
with the same data/settings as the previous one.

UC12 Move/Misc The player moves their character to a new
position on the field, and their initiative will
then be updated. Miscellaneous actions
performed outside of the scope of the app will
also be performed.

UC13 Defend The character being attacked makes a defense
roll against an attack with their current armor
and/or shield.

UC14 Hold The player decides to take no action on their
turn. Holds after the first will decrease a
player’s number of actions by 1.

UC15 WaitUntil The player declares a condition that may be
met. Players in waiting have their turns skipped.
If the condition is met, the player can
immediately take action, even when it is not
their turn.

UC16 Intervene During certain actions, most notably attacking,
players who aren’t targets of the attack may
jump in to defend their teammates.

UC17 EditSelected Allows a selected character to be edited.
Examples include changing their names,
affiliations, or number of actions.

UC18 Chat Players can communicate with each other
through text. Messages can be sent both publicly
and privately.

UC19 Confirm The active character confirms their action.

UC20 StartSession (GM only) The GM starts the session, preventing
others from joining. Prompts all players to roll
for their initial initiative values.

UC21 EndSession (GM only) The GM ends the current session. All
player actions are disabled and an optional
ending message may be displayed to everyone.

9

UC22 SignalPlayer (GM only) The GM selects a player to perform
their action on the current segment. The
selected player’s controls will be activated.

Table 4: Detailed use case descriptions for the session actions.

Requirement Traceability Matrix
The following tables contain our requirement traceability matrix. The matrix was divided
into two tables to preserve formatting and for readability.

Fig. 3: Requirement Traceability Matrix for functional requirements 1 - 20.

10

Fig. 4: Requirement Traceability Matrix for functional requirements 21 - 39.

11

Updated Design
Summary of Changes
Since our original project design, we have not had any major changes in the high-level
structure of our systems. Instead, our program units have been further refined and adjusted
to more accurately represent the features and systems that have been implemented or will
be as development proceeds. Most of the program unit changes that occurred were in the
actions system. Various program units were removed since they were no longer relevant or
were simplified.

Updated high-level and medium-level design
System-level diagram
The following diagram is of our system’s context model, which illustrates the high-level
components of the system. The character profile system allows the creation and
management of character profiles. The authentications system enables players to register
and log into their accounts. The session management system will allow players to join
sessions and the GM to manage them. The real-time sessions system is the backbone of our
sessions which enables real-time communication. The actions system allows players to take
actions during sessions, and our web API controllers system enables all our systems to
interface with our databases.

Fig. 5: The table above shows the context model of the Initiative Table application for
“BETA Universe Systems.”

12

Program units
The Initiative Table application for “BETA Universe Systems” is a non-object-oriented
solutions project. Most of these systems share data and are connected and feature a
hierarchy. Our authentication system appears first at the highest level, followed by the
character profile and session management system. Then our actions, real-time session, and
web API controllers systems are at the lowest level. The following tables show the different
program units that are required to make each of the systems work.

Authentication The authentication system primarily consists of a Vue
component that provides the user with a user
interface and makes AJAX requests based on the user
input to our web API controllers, interacting with our
database. The system will allow users to register for
an account and log in.

registerPlayer(player) Inputs: A player object based on our database
players table.
Outputs: A player object based on our database
players table or an error.
Description: This sends a request to our players web
API controller to create a new record for the player in
the table.
Program Units Called: None
Exceptions: An exception is thrown if the player
object is empty or incorrect.

loginPlayer(player) Inputs: A player object based on our database
players table.
Outputs: A player object based on our database
players table or an error.
Description: This sends a request to our players web
API controller to check if the user exists and if the
credentials match.
Program Units Called: None
Exceptions: An exception is thrown if the player
object is empty, incorrect or if the credentials are
incorrect.

13

sendSecurityEmail(passcode) Inputs: A 6 digit random number.
Outputs: A success message or Error.
Description: This sends an email with the number to
the player’s email when registering to verify the
email is valid—waits for the correct number to be
entered.
Program Units Called: Calls registerPlayer upon
successful entering of the number.
Exceptions: An exception is thrown if the email is
invalid and cannot be sent.

Table 5: The table above lists the program units under the Authentication system, allowing
users to register and log into accounts.

Real-Time Session The real-time session system primarily consists of a
SignalR Hub. The hub contains all of the methods that
will send events to our connected clients to control
the flow of gameplay and send messages to the chat
log of the current session.

These methods are called initially on the client-side
and then handled by SignalR. SignalR determines
which connected clients need to receive the event
signal and sends it to them with any optional data
attached.

All of the connected clients listen for the event signals
and handle them once received.

sendMessageToAll(message) Inputs: A message object
Outputs: An event signal with the message attached
to all the connected clients.
Description: Sends a message to the chat log that all
the connected clients to based on the passed object.
Program Units Called: None
Exceptions: An exception is thrown if the message
object is empty or incorrect.

14

sendMessageTo(message,
playerID)

Inputs: A message object and int playerID. The
playerID corresponds to the identifier used internally
by SignalR when they connect initially.
Outputs: An event signal with the message attached
to only the playerID that is connected.
Description: Sends a direct message to only the chat
log of the playerID that was passed.
Program Units Called: None
Exceptions: An exception is thrown if the message
object is empty or incorrect.

JoinSession(playerName,
sessionName)

Inputs: string playerName and string sessionName.
Outputs: An event signal to all connected clients with
a list of the currently connected players names
attached (includes new player).
Description: Adds the playerName to the current
session based on the passed name and assigns them
an internal playerID. SignalR establishes a
connection.
Program Units Called: Calls sendMessageToAll to let
everyone know that a new player has joined the
current session.
Exceptions: An exception is thrown if the
sessionName cannot be used to find a session in the
sessions table.

Override
OnDisconnectedAsync(playerID,
sessionName)

Inputs: int playerID.
Outputs: An event signal to all connected clients with
a list of the currently connected players names
attached (includes the player that left/ended their
connection).
Description: Overrides the SignalR disconnect
function. Removes the player from the current
session based on the passed playerID and
sessionName.
Program Units Called: Calls sendMessageToAll to let
everyone know that a passed player has left the
current session.
Exceptions: An exception is thrown if the
sessionName cannot be used to find a session in the
sessions table.

15

updateInitativeTable(tableData,
sessionName)

Inputs: An array of initiative table data [number,
playerName] and string sessionName.
Outputs: An event signal with the tableData attached
to all the connected clients.
Description: When the initiative table data has been
modified by an action this method is called to send
the updated data to all the connected clients.
Program Units Called: None
Exceptions: An exception is thrown if the
sessionName cannot be used to find a session in the
sessions table.

SignalPlayer(playerID) Inputs: int playerID.
Outputs: An event signal.
Description: Once a player’s initiative is next, or
when they need to roll the GM signals, it is their turn.
Enables the user interface for the player.
Program Units Called: None
Exceptions: An exception is thrown if the playerID
cannot be used to find a player in the session.

CloseAnyOpenModals(playerID) Inputs: int playerID.
Outputs: An event signal.
Description: This is a generic helper method that
will close any open modals for a given playerID.
Typically used during an intervention.
Program Units Called: None
Exceptions: An exception is thrown if the playerID
cannot be used to find a player in the session.

OpenATKDFNDModal(playerID) Inputs: int playerID.
Outputs: An event signal.
Description: This is a generic helper method that
opens the attack/defend modal for a given playerID.
Typically used during an intervention.
Program Units Called: None
Exceptions: An exception is thrown if the playerID
cannot be used to find a player in the session.

16

Table 6: The table above lists the program units under the Real-Time Session System,
which allows our real-time session system to control the flow of the session gameplay and

chat log.

Actions The actions system primarily consists of a
Vue component that provides the user with
a user interface and all of the potential
actions the user can take. The methods are
called and defined on the client-side. After
execution of each process, it sends data or
calls additional methods in other systems
or the current one depending on the action.

Confirm(Action) Inputs: A selected action
Outputs: A confirmation message the
action was selected.
Description: This finalizes the user's
selected action.
Program Units called: The passed action
Exception: An exception is thrown if no
action is selected.

Attack(Target) Inputs: Target (Player)
Outputs: A message once the action loop
ends.
Description: This starts the attack process
and signals the defender to defend.
Program Units called: Defend, roll,
Initiative.
Exception: An exception is thrown if an
invalid target is selected.

Defend() Inputs: None
Outputs: A message once the action loop
ends.
Description: This player is being attacked
and must prepare their defense, and make
rolls.
Program Units called: Roll, Initiative.
Exception: An exception is thrown if they
do not have an action.

17

Roll(autoroll, diceFormula) Inputs: A boolean if the user would like to
autoroll and a string containing the dice
formula for the current roll.
Outputs: An integer containing the final
rolled value.
Description: This is a dice roller that
outputs a number based on the input
Program Units called: none
Exception: An exception is thrown if the
dice formula is in an invalid format.

Initiative() Inputs: None
Outputs: A message once the action loop
ends.
Description: This shifts all the user turn
orders based on the actions they have
taken this round.
Program Units called: None
Exception: None

Hold() Inputs: None
Outputs: A message once the action loop
ends.
Description: The user holds their action
Program Units called: Initiative
Exception: An exception is thrown if they
do not have an action, unless in the second
round.

Wait() Inputs: None
Outputs: A message once the action loop
ends.
Description: The user waits until a certain
event to occur before acting.
Program Units called: Initiative
Exception: An exception is thrown if they
do not have action or do not specify an
event.

18

Location(roll) Inputs: An integer
Outputs: An integer corresponding to a
body map.
Description: It tells the group where an
attack happened on the body chart
depending on what was rolled.
Program Units called: Roll
Exception: An exception is thrown if no
roll was given

Repeat Attack() Inputs: Nothing
Outputs: A message once the action loop
ends.
Description: It repeats the users previous
attack action
Program Units called: Attack
Exception: An exception is thrown if there
is no previous attack.

Intervention() Inputs: None
Outputs: A message once the action loop
ends.
Description: The user interrupts a
defender by retargeting the attack to
themselves.
Program Units called: Defend
Exception: An exception is thrown if they
do not have an action

Move(distance) Inputs: An integer representing how far
they want to move
Outputs: A message once the action loop
ends.
Description: The user moves distance
units.
Program Units called: Initiative
Exception: An exception is thrown if they
do not have an action or invalid number

Table 7: The table above lists the program units under the Action Systems. This lists many
of the available actions the users can take each round.

19

Web API Controllers The Web API controllers system will provide each of
our database tables with an interface that our Vue
components can persist and retrieve our data.

Each Web API controller is a module with its own
program units. Each controller has similar standard
Web API HTTP methods and has been condensed for
readability and formatting.

The player's Web API controller differentiates since it
involves authenticating and registering users. The
loadout Web API controller differentiates as well
since it saves an entire character including all of their
weapons, armors, and shields.

chrc_profilesController,
sessionsController,
session_usersController,
chat_logController,
initiativeTableController

Each Web API controller contains the following
methods :

● GET(ID): Returns a single record with the
provided ID.

● GET() : Returns all records.
● POST(record): Adds a new record to the

database table.
● PUT(record): Updates an existing record

based on the passed record.
● DELETE(ID): Deletes an existing record with

the provided ID.

Exceptions can occur during each of these methods if
a record is not found or cannot be added to the
database due to being empty or incorrect.

playersController,
● login(playersRecord): Retrieves the record

from the players table based on the passed
record. Hashes the password and checks if it
matches with the hashed password in the
database. If so, return the playersRecord. An
exception is returned if the password does not
match

● register(playersRecord): Checks the passed
record does not already exist. If it does not, the
password is hashed and the playersRecord is
added to the table.

20

An exception is returned if the record already
exists.

loadoutController
● GET(charID): Returns a character loadout

record with the provided ID.
● POST(loadout): Saves a character loadout to

the database table.
● PUT(loadout): Updates an existing character

loadout based on the passed record.
● DELETE(charID): Deletes an existing

character loadout with the provided ID.

Table 8: The table above lists the program units under the Web API Controllers system.
This lists the different controllers this system will have and the program units within each

one.

Character Profile The Character Profile system will allow
users to manage the characters that they
have made to use in various sessions. The
character management system allows users
to perform certain actions regarding their
characters, like creating new ones and
updating existing ones. Users must be
logged in in order to access these options.

21

createCharacter() When the user clicks the “Create New”
button on the character menu, a prompt
will appear asking for several values for the
new character.

Inputs: Numerical values or text input
from the user, to be used to initialize the
character attributes.
Outputs: A completion message and an
updated view of the characters list, with
the new character visible.
Description: A POST request for the new
character is made with the inputted
information, and the new record is saved to
the database under the user’s account.
Program Units called:
chrc_profilesController
Exception: None

editCharacter(id) Within the character menu, users can click
on the “Edit” button underneath a
character’s name to begin the editing
process.

This process functions similarly to
createCharacter(), except a PUT request is
made instead of a POST.
Inputs: None
Outputs: A completion message and an
updated view of the characters list.
Description: A PUT request is made to the
server with the selected character’s ID, and
the new values.
Program Units called:
chrc_profilesController
Exception: None

22

deleteCharacter(id) Within the character menu, users can click
on the “Delete” button associated with each
character to delete them.

Inputs: None
Outputs: A completion message and an
updated view of the characters list.
Description: A DELETE request is made to
the server with the selected character’s ID.
Program Units called:
chrc_profilesController
Exception: None

Table 9: The table above lists the functions of the Character Profile system.

Session Management Upon logging in, users are presented with
all the available sessions that have been
created by all players.

All users are allowed to join a session,
however if one is logged in as a GM, then
they will gain access to a “Create New”
button and “Delete” buttons associated
with each session.

joinSession(id) Each session has a “Join” button that users
can click to join a real-time session with
other players wishing to join the same
session.

Note that sessions that have already started
will not be able to be joined.

This program unit can be thought of as the
client-side version of the “JoinSession” unit
from the Real-Time Sessions system.

Inputs: None
Outputs: Connects to the session and
brings the user to the initiative table
interface to begin playing.

23

If the session is unable to be joined, an
error message will appear, and the user will
remain on the same page.
Description: Starts the process for joining
a session.
Program Units called:
JoinSession(playerName, sessionName)
Exception: None

createSession() Only GMs are allowed to create new
sessions. Doing so will create a new item
that will be displayed on the homepage for
logged-in users.

Upon clicking the “Create New” button, a
prompt will appear, asking for a name for
the new session.
Inputs: Text input from the GM.
Outputs: A completion message and an
updated view of the sessions list.
Description: A POST request is sent to the
server with the data from the user.
Program Units called: sessionsController
Exception: None

deleteSession(id) Only GMs can delete sessions.

If a session to be deleted is in progress, a
prompt will be shown confirming if the GM
wants to force-end the session.

Inputs: Confirmation from the GM
Outputs: All players within the session are
kicked, and the SignalR hub associated with
the session is closed. The session is then
removed from the database. A completion
message is shown and the sessions list is
updated.
Description: A DELETE request is sent to
the server with the data from the user.
Program Units called: sessionsController
Exception: None

Table 10: The table above lists the functions of the Session Management system.

24

Database tables
The following are the database tables for players, character profiles, sessions, session users,
chat log, and initiative table. All of our strong database entities have general metadata
attached; this includes the record’s creation date, the date of the last edit made to the
record, the record’s creator, the last editor to the record, and if the record is deleted. The
player’s database table includes the player’s primary key, name, e-mail, account password,
and a flag to determine if the player is a game master. The character profile database table
includes the character profile primary key, the identification of ownership, the character
profile group name if they are a non-playable character, and the many stats. The sessions
table consists of the session primary key, the session’s name, and if the session is joinable.
The initiative table includes the initiative primary key, the session foreign key, a player
foreign key to determine which player has joined the session, and character profile foreign
key for retrieving character information for the session and the initiative value used to
determine the order of play. This weak entity is the primary data used in our real-time
session system to determine the order of play and who is in a current session. Next, the chat
log table includes the message primary key, the session foreign key for which session the
message belongs to, the foreign key for where the message is being sent to, the foreign key
for where the message came from, the message itself, and if it is a direct message or a global
message. Any primary keys and foreign keys have been bolded for readability and
formatting.

creationDate lastEdit creator lastEditor isDeleted

Table 11: General metadata appended to all the database tables.

playerID name email password isGM

Table 12: Player’s database table.

character
ProfileID

characterProfile
_playerID

characterProfile
GroupName

isNPC PER MD

SPK AGL STR CON HTP LHTP

AIM T.AIM MOVE FLY PAIN BlD

T.PEN P.PEN Cur_HTP MEM WIS MS

MR MD CHR PB MAN RR

25

PR SANITY SEX initBonus numActions

Table 13: Character Profile database table. Contains the many statistics of character
profiles.

sessionID name isJoinable

Table 14: Sessions database table.

messageID messageID_
sessionID

messageID_TO
playerID

messageID_FRO
MplayerID

message isDM

Table 15: Chat log database table

initTableID initTableID
_sessionID

initTableID
_playerID

initTableID_character
ProfileID

initvalue

Table 16: Initiative database table

WeaponID WeaponID_character
ProfileID

weaponName weapon
Class

isRange

weaponStats weaponShots weaponDAM weapon
Skill

weaponChatMsg

weaponClass
Bonus

Table 17: Weapons database table

ArmorID ArmorID__character
ProfileID

armorName armorClass armorLoc

armorASB armorRFLT TargetFactor
(range only)

Table 18: Armors database table

26

ShieldID ShieldID___character
ProfileID

shieldName shieldClass shieldLoc

shieldASB shieldRFLT shieldIntPercent

Table 19: Shields database table

Updated Hardware Design
The initiative table application does not have much in terms of hardware. It is primarily a
software solution, but it does make use of server hardware services for hosting. The client
has provided access to a hyper-v web server and MS-SQL Database server. The database
server is an instance of abstracted hardware. Other than these configurations, the team’s
focus is on implementing a software-based solution to the client’s needs.

27

Updated User Interface Design
The following figures are snapshots of the system’s potential user interface. Note: The user
interface slightly varies between the two main roles GM and player. Buttons colored in
yellow only appear for the GM, everything else appears for both.

Fig. 6: Login UI (Desktop). The initial login screen for the website. Users with accounts can
use their username and password to access their account and enter the main portion of the

application. New users can access the registration through the register button.

28

Fig. 7: Login UI (Mobile). Mobile version of the login page. There is not much difference
from the desktop version other than scaling the page size to the appropriate mobile aspect

ratio.

29

Fig. 8: Home page UI (Desktop). After logging in, the player is presented with a section of
the available sessions. Each card in the section represents a session with a button to join.
There is also a section for the characters the player has created. Each card represents a

character, and there are buttons to edit and delete the individual characters. When logged
in as a GM, there are two additional functions: creating a new session and deleting a

session.

30

Fig. 9: Home page UI (Mobile). For the mobile version of the homepage UI, the same
functionality is present; however, the two-session and character sections have been resized

to fit a mobile size screen. The cards now take up less vertical space to make up for the
change in screen size.

31

Fig. 10: Session UI (Desktop). The session UI is one of the critical components of the
application. This UI comes after a player joins a session and displays game specific

information and interaction. The top bar shows the campaign name chosen by the GM. The
bar just underneath the campaign name is the button palette, which gives the players

interactivity to make actions within the game. The left side bar holds the initiative table
information, which keeps track of the player turn order. The color of each name denotes the

different teams. The right and largest area displays the chat log. The chat log displays
actions that have been taken, results of those actions, and player chat messages. The bottom

of the chat area is the area where players can choose who to send a message, type in their
message, and click the send icon.

32

Fig. 11: Session UI (Mobile). The same functionality is present for the mobile version of the
session UI; however, the four main sections have been condensed vertically to present the

information. The button palette now wraps to make sure they are all accessible.

33

Fig. 12: Create a new character (Desktop). This is the screen where you create a new
character. This is divided into five sections. We have the details section, the stats, the

weapons, the armor, and the shield.

34

Fig. 13: Create a new character (Mobile). This is the screen where you create a new
character. It is the same as the desktop, but has been scaled for mobile devices. Everything

is readable and we have increased the row count so there is not as much at once.

Fig. 14: Edit a Character: (Desktop). This is where you can edit a character while in a
session. You choose one character from the list of characters you control.

35

Fig. 15: Attack Modal: (Desktop). This is the screen where you start the attack action. You
choose your equipment and fill in all of the variables needed for the attack, target, range,

movement, etc.

Fig. 16: Next Character Signal (Desktop). This shows that the next person, you, have been
pinged to take their turn. The GM controls this with the “Go” button

36

Fig. 17: initiative Roll (Desktop). This is the initiative roll from an auto roller. The active
character chose auto roll when making their character. It is 3D6 plus their initiative stat.

This is different for every character.

37

Glossary
Word Definition/ Abbreviation

Campaign An overarching story, a novel while the sessions are the chapter.

Check A task the PC needs to perform in order to perform an action, such as
jumping a chasm.

END Endurance.

GM Game master.

Go Signals it is the next player’s turn

Hold Do nothing, in reference to an option on a character’s turn.

Initiative A stat with a dice roll that determines the order that the characters move
in, higher number first.

Intervention A character can attempt to interrupt another action.

ITA Initiative Table Application.

Location It is referring to where on the body you are interacting with.

NPC A non-player character.

PC Player character.

Range The number of spaces from point a to point b.

Round A full rotation of the initiative order.

RPG Role playing game.

Saving Roll A check in order to prevent someone from occurring, such as being
poisoned.

Segment The current initiative value.

Segment Count The number of segments that have passed.

Self Move How many units the active player moved that action.

Session Each time the group meets to continue the game.

Shield % The percent chance the attack hits your shield

Stats The integer number corresponding to a specific skill, strength stat.

38

Word Definition/ Abbreviation

Target Move How many units the target moved in their last action

Wait Player waits until an event occurs

XP Experience points.

Table 20 & 21: The tables above contain 25 glossary terms surrounding the project's
problem domain.

39

Engineering Standards and/or Technologies
The first standard technology used by the team was the HyperText Markup Language or
HTML, which is the standard markup language for documents designed to be displayed in a
web browser. We will use this for the structure and outline of our entire front-end since our
project is a web-based application. The second standard we will be using is the RFC 6455
WebSocket protocol. The WebSocket Protocol enables two-way communication between a
client in a controlled environment to a remote host that has opted-in to communications
purposely. We will be using this to facilitate real-time communication within our sessions.

Additional technologies used in our project include Visual Studio 2019 an integrated
development environment (IDE) for .NET and C++ developers on Windows. This technology
helped the team write code in a single coherent environment and perform debugging
throughout the development of the project. Another technology that the team used is
GitHub. GitHub is a website and cloud-based service that helps developers store and
manage their code, as well as track and control changes to their code. This technology
allows the team to share the work in and distribute the workload as well as keep the work
up to date. Next, the team used Vuetify which is a material design front-end framework that
allowed the ease of components built from Hyper-Text Markup Language (HTML),
Cascading Style Sheets (CSS), and JavaScript with minimal difficulty.

ASP. NET is another technology that the team used which is a web framework, created by
Microsoft, for building modern web apps and services with .NET. The Team used ASP. NET
to allow connection between the front-end and the database that way information could be
stored properly and efficiently. In conjunction with ASP. NET the team used a MS SQL
database which allowed for the team to store our data in a relational database. Additionally,
SignalR was a technology used to make sure that the information used was updated in
real-time on the application’s interface. SignalR is a free and open-source software library
for ASP.NET that allows server code to send asynchronous notifications to client-side web
applications.

40

Project Impact and Context Considerations
In terms of public needs, the application falls into the entertainment category. While not as
urgent as health and safety, entertainment is crucial for mental health and productivity. The
Initiative Table Application will have a significant impact on the social and cultural aspects
of the tabletop RPG player community.

Socially, the application will make the client’s game more accessible and easier to play. This
could attract more players to the community and increase the social aspect of the
community as a whole. The social impacts of this type of technology has the potential to
become obvious and widespread. One of the limiting factors for this type of gameplay is the
need to be in the same physical location with other players for long periods of time. Much of
this is due to the lengthy calculations our project aims to eliminate, thus making gameplay
much faster and more enjoyable, increasing the positive social impact of the entire gaming
community.

Culturally, this application addresses a sub-culture found in the community of RPGs.
Developing new technology, gameplay and content to this industry will strengthen and
expand the subculture influence. It is unlikely that the application will have a significant
global impact in the near future. However, there is a strong tabletop RPG in Europe and it is
possible that the application may reach players from different countries in the future.
Economically, the client intends to monetize this type of application in a novel way that may
have some impact on the economy surrounding the tabletop gaming industry.

41

References
Jean Yang, Vijay Janapa Reddi, Yuhao Zhu, and Peter Bailis. 2016. Research for Practice: Web
Security and Mobile Web Computing: Expert-curated Guides to the Best of CS Research. Queue
14, 4 (July-August 2016), 80–95. DOI:https://doi.org/10.1145/2984629.3005356
The article above informs us how to better our security and authentication for our
application. We are having users enter their email addresses and passwords; we want to
make sure that information is protected so unauthorized users can not get access to their
accounts.

John S. Tonello. 2017. The full stack project. Linux J. 2017, 281, Article 1 (September 2017).
This article is about the full stack project. Full stack development is used to help develop
front end to back end development. Full stack development is also useful for mobile
applications. This is how we are coding our project, one part will be a mobile application
and another part will be a mobile application. Full stack development is also used for web
based applications.

John Molt. 2017. Beta Universe Systems Book of Player Character Combat.
This is the book that we are digitizing. It is our reference material that our advisor has
written for his tabletop role playing game. This book details every aspect of combat and
everything that he wants us to automate. If we ever have a question we reference this book.

Richard W. C. Lui. 2005. Security models for authorization, and delegation and accountability.
Ph.D. Dissertation. University of Hong Kong (People's Republic of China). Order Number:
AAI0809504.
The article is about the different security models used for authentication and
authorization. It also talks about the different roles users may have and each role has a
different amount of access than other users. This is applicable in our case since we will
have a player role and a GM role.

Seikyung Jung. 2018. Web development with node.js. J. Comput. Sci. Coll. 33, 6 (June 2018),
154–156.
We will be doing web development with Vue and node.js. This book is about web
development with node.js and we will be using it as a reference for what to do. It is a
tutorial on how to do web development with node.js. We are going to walk ourselves
through it to get more familiar with it.

Thomas Gustafsson and Jörgen Hansson. 2004. Dynamic on-demand updating of data in
real-time database systems. In Proceedings of the 2004 ACM symposium on Applied

42

https://doi.org/10.1145/2984629.3005356

computing (SAC '04). Association for Computing Machinery, New York, NY, USA, 846–853.
DOI:https://doi.org/10.1145/967900.968074
This article is about updating data in real time. Our project deals with a lot of real time
updates between each player and GM. This article goes over a strategy on how to solve this,
on demand depth first traversal. We want to make sure everyone is updated at the same
time without much lag.

https://kastark.co.uk/rpgs/encounter-tracker/
This website is similar to our project. It is an initiative tracker where you manually enter
your name, initiative number, and HP. This differs from our project in that ours automates
all of combat and not just helps with the initiative order.

https://www.dndbeyond.com/
This is a D&D reference website where you can store characters, books, classes, pretty
much everything you need for D&D. We are aiming to make something like this, but for our
role playing system. Our project is step one of that plan that our mentor has.

https://roll20.net/
This is a popular Dungeons and Dragons companion that shows a map, plays music, and has
a chat log. After our part of the project is done our advisor wants to add a virtual map and
music. It is used in a group setting similar to our web app. It is used as a companion, but is
not a supplement for the game.

https://dnd.wizards.com/charactersheets
This is where you get D&D character sheets, which is similar to what our creator made. In
our app we allow the user to digitize their character sheet and store it in our app. It is
encouraged to use the app to its best ability.

43

https://doi.org/10.1145/967900.968074
https://kastark.co.uk/rpgs/encounter-tracker/
https://www.dndbeyond.com/

Work Contribution

Andy
Alarcon

Jacob
Gayban

Mark
Graham

Jacob
Tucker

Griffin
Wagenknecht

Project Assignment 2
Paper (Writing sections
and formatting)

2.0 1.5 2.0 1.5 3.5

Total 2.0 1.5 2.0 1.5 3.5

Table 22: The table above shows the amount of time spent by each team member on each
activity.

44

